Remove old gaphor file
This commit is contained in:
parent
bbe73c27e9
commit
2b3f9d19a3
3
.gitignore
vendored
3
.gitignore
vendored
@ -23,6 +23,7 @@ svg-inkscape/
|
||||
*-blx.bib
|
||||
*(busy)
|
||||
*SAVE-ERROR
|
||||
*.sum
|
||||
|
||||
# Python
|
||||
*.pyc
|
||||
@ -41,4 +42,4 @@ venv/
|
||||
Build/
|
||||
Output/
|
||||
|
||||
.vscode/
|
||||
.vscode/
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -12,43 +12,47 @@
|
||||
%TC:envir table [ignore] ignore
|
||||
|
||||
% === Content ===
|
||||
\chapter{First Chapter}
|
||||
|
||||
Das \gls{abstract} beschreibt in wenigen Sätzen die Zielsetzung und das Ergebnis der Ausarbeitung. Das Abstract muss sich vollständig auf der Titelseite befinden. Die Zeichensatzformatierung wird in einem eigenen Absatz beschrieben Das Abstract soll es den Lesern:innen ermöglichen, innerhalb von wenigen Augenblicken zu erfassen, welcher Inhalt hinter der Überschrift steckt und ob das Thema, aus Sicht der Leser:innen, zur weiteren Bearbeitung lohnt. Das Abstract ist keine verbale Beschreibung des Inhaltsverzeichnisses, sondern gibt kurz und knapp z.B. die Zielsetzung (z.B. Hypothese), die eingesetzten Methoden und die erzielten Ergebnisse / Erkenntnisse bekannt. Weitere Hinweise finden Sie außerdem im Vorlesungsskript.
|
||||
|
||||
Beispielverweis auf Quelle \cite{ahrensAbschlussarbeiten}.
|
||||
|
||||
Test-Acronym: \acrshort{gcd}.
|
||||
|
||||
\section{First Section}
|
||||
|
||||
% Beispieltabelle
|
||||
\begin{table}[h]
|
||||
\centering
|
||||
\begin{tabular}{|c|c|}
|
||||
\hline
|
||||
Spalte 1 & Spalte 2 \\
|
||||
\hline
|
||||
Inhalt 1 & Inhalt 2 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Beispiel-Tabelle}
|
||||
\label{tab:example}
|
||||
\end{table}
|
||||
|
||||
\chapter{Second Chapter}
|
||||
|
||||
\section{Another Section}
|
||||
|
||||
% Beispielabbildung
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=0.5\textwidth]{HSRTReport/Assets/Images/METI.png}
|
||||
\caption{MeTI-Logo}
|
||||
\label{fig:meti}
|
||||
\end{figure}
|
||||
|
||||
|
||||
%TC:ignore
|
||||
% Alles hier wird von TexCount ignoriert.
|
||||
%TC:endignore
|
||||
\iffalse
|
||||
\chapter{First Chapter}
|
||||
|
||||
Das \gls{abstract} beschreibt in wenigen Sätzen die Zielsetzung und das Ergebnis der Ausarbeitung. Das Abstract muss sich vollständig auf der Titelseite befinden. Die Zeichensatzformatierung wird in einem eigenen Absatz beschrieben Das Abstract soll es den Lesern:innen ermöglichen, innerhalb von wenigen Augenblicken zu erfassen, welcher Inhalt hinter der Überschrift steckt und ob das Thema, aus Sicht der Leser:innen, zur weiteren Bearbeitung lohnt. Das Abstract ist keine verbale Beschreibung des Inhaltsverzeichnisses, sondern gibt kurz und knapp z.B. die Zielsetzung (z.B. Hypothese), die eingesetzten Methoden und die erzielten Ergebnisse / Erkenntnisse bekannt. Weitere Hinweise finden Sie außerdem im Vorlesungsskript.
|
||||
|
||||
Beispielverweis auf Quelle \cite{ahrensAbschlussarbeiten}.
|
||||
|
||||
Test-Acronym: \acrshort{gcd}.
|
||||
|
||||
\section{First Section}
|
||||
|
||||
% Beispieltabelle
|
||||
\begin{table}[h]
|
||||
\centering
|
||||
\begin{tabular}{|c|c|}
|
||||
\hline
|
||||
Spalte 1 & Spalte 2 \\
|
||||
\hline
|
||||
Inhalt 1 & Inhalt 2 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Beispiel-Tabelle}
|
||||
\label{tab:example}
|
||||
\end{table}
|
||||
|
||||
\chapter{Second Chapter}
|
||||
|
||||
\section{Another Section}
|
||||
|
||||
% Beispielabbildung
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=0.5\textwidth]{HSRTReport/Assets/Images/METI.png}
|
||||
\caption{MeTI-Logo}
|
||||
\label{fig:meti}
|
||||
\end{figure}
|
||||
|
||||
% Alles hier wird von TexCount ignoriert.
|
||||
%TC:endignore
|
||||
\fi
|
||||
|
||||
243
Main.bib
243
Main.bib
@ -1,32 +1,217 @@
|
||||
@article{wombat2016,
|
||||
author = {Walther Wombat and Klaus Koala},
|
||||
title = {The true meaning of 42},
|
||||
journal = {Journal of modern skepticism},
|
||||
date = {2016},
|
||||
keywords = {trusted},
|
||||
}
|
||||
@book{lion2010,
|
||||
author = {Laura Lion and Gabrielle Giraffe and Carl Capybara},
|
||||
title = {The dangers of asking the wrong question},
|
||||
publisher = {publishing house},
|
||||
date = {2010},
|
||||
keywords = {trusted},
|
||||
}
|
||||
@online{wikibook,
|
||||
title = {Generating Bibliographies with biblatex and biber},
|
||||
organization = {Wikibooks},
|
||||
date = {2016},
|
||||
urldate = {2016-03-07},
|
||||
url = {https://en.wikibooks.org/wiki/LaTeX/Generating_Bibliographies_with_biblatex_and_biber},
|
||||
keywords = {untrusted},
|
||||
|
||||
@article{ott_einfluss_2021,
|
||||
title = {Einfluss transkranieller Gleichstromstimulation auf das motorische Lernen bei Patienten mit wiederholten Schädelhirntraumen},
|
||||
rights = {http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen},
|
||||
url = {https://refubium.fu-berlin.de/handle/fub188/31761},
|
||||
doi = {10.17169/refubium-31493},
|
||||
abstract = {Sportler, die repetitiv milde Schädelhirntraumen ({SHT}) erlitten haben, zeigen neben neurokognitiven und motorischen Defizite auch ein erhöhtes Risiko zur Entwicklung einer neurodegenerativen Erkrankung ({McKee} et al. 2009, Tremblay et al. 2012, Deak et al. 2016), wie auch eine erhöhte {GABA}-erge Aktivität mit entsprechender Inhibition der {LTP} (Tremblay et al. 2011). Eine verminderte {LTP} führt bei Personen mit repetitiven {SHTs} zu einer Verminderung des motorischen Lernens (De Beaumont et al. 2012). Die transkranielle Gleichstromstimulation ({tDCS}) ist eine nicht-invasive und sichere Methode zur Neuromodulation (Poreizs et al. 2007) und führt zu einer Verminderung von {GABA}-ergen neuronalen Funktionen (Stagg et al. 2011b, Stagg et al. 2011d). Ziel der vorliegenden Studie ist es zu untersuchen, (1) ob bei jungen klinisch gesunden Probanden, die repetitive milde {SHTs} im Rahmen von sportlichen Aktivitäten erlitten haben, subklinische kognitive und motorische Defizite vorliegen und (2) ob anodale {tDCS} über dem primären Motorkortex zu einer Verbesserung der motorischen Lernfähigkeit führt. Insgesamt wurden 35 junge Probanden (20 gesunde Kontrollprobanden und 15 Probanden mit mindestens zwei milden {SHTs} im Rahmen einer sportlichen Aktivität) untersucht. Neben einer neurokognitiven Testung erfolgten in einem einwöchigen Abstand zwei Sitzungen mit motorischen Testungen. Zuerst wurde jeweils das explizite motorische Lernen, mittels Force Motortask, und dann das implizite Lernen, mittels Serial Reaction Time Task ({SRTT}), getestet. Nach randomisierter Zuteilung erfolgte an einem Termin eine anodale und am anderen Termin eine Scheinstimulation über dem linken primären motorischen Kortex während dem Force Motortask.
|
||||
In der Patientengruppe zeigten sich im Vergleich zur Kontrollgruppe signifikante kognitive Defizite im Bereich des Kurzzeitgedächtnisses (p = 0,03) und der verbalen Flüssigkeit (p {\textless} 0,05). Desweiteren wurde durch die anodale Stimulation das explizite Lernen inhibiert (p = 0,02). Anodale offline {tDCS} führt zu einer initialen, nicht signifikanten Verbesserung des impliziten motorischen Lernens. Anodale {tDCS} zeigte in der Kontrollgruppe weder auf das explizierte noch das implizierte Lernen einen Effekt.
|
||||
Dies ist die erste Studie, die den stimulatorischen Effekt auf das motorische Lernen von Probanden, die repetitiv milde {SHTs} erlitten haben, untersucht. Es sind somit zukünftig weitere Forschungen zur Pathophysiologie und möglichen chronischen Folgezuständen nach repetitiven milden {SHTs}, sowie zum Einfluss anodaler {tDCS} auf motorische Fähigkeiten in dieser Probandengruppe nötig.},
|
||||
author = {Ott, Stefanie},
|
||||
urldate = {2025-10-28},
|
||||
date = {2021},
|
||||
note = {Accepted: 2021-12-01T10:19:05Z},
|
||||
file = {Full Text PDF:/home/frederik/Zotero/storage/9XZMZB82/Ott - 2021 - Einfluss transkranieller Gleichstromstimulation auf das motorische Lernen bei Patienten mit wiederho.pdf:application/pdf},
|
||||
}
|
||||
|
||||
@book{ahrensAbschlussarbeiten,
|
||||
author = {Ahrens, Volker},
|
||||
year = {2014},
|
||||
month = {01},
|
||||
pages = {},
|
||||
title = {Abschlussarbeiten richtig gliedern in Naturwissenschaften, Technik und Wirtschaft},
|
||||
isbn = {978-3-8252-4096-7},
|
||||
doi = {10.3218/3977-1}
|
||||
@article{neubauer_intelligenzsteigerung_2022,
|
||||
title = {Intelligenzsteigerung durch Neuroenhancement?},
|
||||
volume = {73},
|
||||
issn = {0033-3042},
|
||||
url = {https://econtent.hogrefe.com/doi/abs/10.1026/0033-3042/a000599},
|
||||
doi = {10.1026/0033-3042/a000599},
|
||||
abstract = {Zusammenfassung. Die menschliche Intelligenz gehört zu den bestuntersuchten psychologischen Merkmalen, in denen interindividuelle Differenzen bestehen. Die mehr als 100jährige Forschungsgeschichte hat einen hoch belastbaren Wissensstand hervorgebracht; dieser umfasst die Definition, die Psychometrie, die (ontogenetische) Entwicklung, die Struktur, die Vorhersagekraft für real-life-Variablen, das Wissen über elementar-kognitive, verhaltensgenetische und neurobiologische Grundlagen der Intelligenz, u.v.m. Jüngst steht zudem die Frage des ‚enhancements‘ der Intelligenz im Fokus, eine Frage, die nicht zuletzt durch die aktuelle philosophische Strömung des Transhumanismus stark an Bedeutung gewinnt. Der Transhumanismus nimmt eine substanzielle Erhöhung (enhancement) von Fähigkeiten und anderen (auch) psychologischen Eigenschaften des Menschen ins Zentrum und postuliert, dass ein soziokultureller Fortschritt – und letztlich das Überlegen des Homo Sapiens und unseres Planeten – erst durch technologischen Fortschritt ermöglicht werde. Viele Transhumanisten stellen eine substanzielle Steigerung der Intelligenz in den Vordergrund, die primär durch (neuro–)technologische und pharmakologische Maßnahmen zu bewerkstelligen seien. Diese Debatten sind jedoch oft gekennzeichnet durch übertrieben optimistische Annahmen der Möglichkeiten moderner neurowissenschaftlicher Methoden bei gleichzeitiger Vernachlässigung der potenziellen negativen Folgen für das Individuum, für die Gesellschaften und insgesamt für unsere Spezies. Im gegenständlichen Überblicksbeitrag werden behaviorale, neuroelektrische und pharmakologische Methoden im Hinblick auf ihr aktuelles Potenzial einer Steigerung der individuellen Intelligenz analysiert. Die zwischenzeitlich zu diesen Fragen vorliegenden experimentellen Studien, sowie verfügbare Metaanalysen lassen allerdings den Schluss zu, dass bislang keine der gegenwärtig verfügbaren Methoden das Potenzial haben, die individuelle Intelligenz substanziell zu steigern. Und selbst falls solche möglicherweise in absehbarer Zeit zur Verfügung stünden, müssen zuvor sowohl individuelle als auch gesellschaftliche (negative) Konsequenzen einer kritischen Analyse unterzogen werden. Diese sind Gegenstand einer abschließenden Diskussion.},
|
||||
pages = {190--203},
|
||||
number = {3},
|
||||
journaltitle = {Psychologische Rundschau},
|
||||
author = {Neubauer, Aljoscha C. and Wood, Guilherme},
|
||||
urldate = {2025-10-28},
|
||||
date = {2022-07},
|
||||
note = {Publisher: Hogrefe Verlag},
|
||||
keywords = {Arbeitsgedächtnistraining, enhancement, Enhancement, intelligence, Intelligenz, transcranial stimulation, transhumanism, Transhumanismus, Transkranielle Stimulation, working memory training},
|
||||
}
|
||||
|
||||
@article{luber_enhancement_2014,
|
||||
title = {Enhancement of human cognitive performance using transcranial magnetic stimulation ({TMS})},
|
||||
volume = {85},
|
||||
issn = {1053-8119},
|
||||
url = {https://pmc.ncbi.nlm.nih.gov/articles/PMC4083569/},
|
||||
doi = {10.1016/j.neuroimage.2013.06.007},
|
||||
abstract = {Here we review the usefulness of transcranial magnetic stimulation ({TMS}) in modulating cortical networks in ways that might produce performance enhancements in healthy human subjects. To date over sixty studies have reported significant improvements in speed and accuracy in a variety of tasks involving perceptual, motor, and executive processing. Two basic categories of enhancement mechanisms are suggested by this literature: direct modulation of a cortical region or network that leads to more efficient processing, and addition-by-subtraction, which is disruption of processing which competes or distracts from task performance. Potential applications of {TMS} cognitive enhancement, including research into cortical function, rehabilitation therapy in neurological and psychiatric illness, and accelerated skill acquisition in healthy individuals are discussed, as are methods of optimizing the magnitude and duration of {TMS}-induced performance enhancement, such as improvement of targeting through further integration of brain imaging with {TMS}. One technique, combining multiple sessions of {TMS} with concurrent {TMS}/task performance to induce Hebbian-like learning, appears to be promising for prolonging enhancement effects. While further refinements in the application of {TMS} to cognitive enhancement can still be made, and questions remain regarding the mechanisms underlying the observed effects, this appears to be a fruitful area of investigation that may shed light on the basic mechanisms of cognitive function and their therapeutic modulation.},
|
||||
pages = {961--970},
|
||||
number = {0},
|
||||
journaltitle = {{NeuroImage}},
|
||||
shortjournal = {Neuroimage},
|
||||
author = {Luber, Bruce and Lisanby, \{and\} Sarah H.},
|
||||
urldate = {2025-10-28},
|
||||
date = {2014-01-15},
|
||||
pmid = {23770409},
|
||||
pmcid = {PMC4083569},
|
||||
}
|
||||
|
||||
@article{bennabi_transcranial_2014,
|
||||
title = {Transcranial direct current stimulation for memory enhancement: from clinical research to animal models},
|
||||
volume = {8},
|
||||
issn = {1662-5137},
|
||||
url = {https://pmc.ncbi.nlm.nih.gov/articles/PMC4154388/},
|
||||
doi = {10.3389/fnsys.2014.00159},
|
||||
shorttitle = {Transcranial direct current stimulation for memory enhancement},
|
||||
abstract = {There is a growing demand for new brain-enhancing technologies to improve mental performance, both for patients with cognitive disorders and for healthy individuals. Transcranial direct current stimulation ({tDCS}) is a non-invasive, painless, and easy to use neuromodulatory technique that can improve performance on a variety of cognitive tasks in humans despite its exact mode of action remains unclear. We have conducted a mini-review of the literature to first briefly summarize the growing amount of data from clinical trials assessing the efficacy of {tDCS}, focusing exclusively on learning and memory performances in healthy human subjects and in patients with depression, schizophrenia, and other neurological disorders. We then discuss these findings in the context of the strikingly few studies resulting from animal research. Finally, we highlight future directions and limitations in this field and emphasize the need to develop translational studies to better understand how {tDCS} improves memory, a necessary condition before it can be used as a therapeutic tool.},
|
||||
pages = {159},
|
||||
journaltitle = {Frontiers in Systems Neuroscience},
|
||||
shortjournal = {Front Syst Neurosci},
|
||||
author = {Bennabi, Djamila and Pedron, Solène and Haffen, Emmanuel and Monnin, Julie and Peterschmitt, Yvan and Van Waes, Vincent},
|
||||
urldate = {2025-10-28},
|
||||
date = {2014-09-04},
|
||||
pmid = {25237299},
|
||||
pmcid = {PMC4154388},
|
||||
file = {Full Text PDF:/home/frederik/Zotero/storage/RYFH7G7A/Bennabi et al. - 2014 - Transcranial direct current stimulation for memory enhancement from clinical research to animal mod.pdf:application/pdf},
|
||||
}
|
||||
|
||||
@article{cavaleiro_memory_2020,
|
||||
title = {Memory and Cognition-Related Neuroplasticity Enhancement by Transcranial Direct Current Stimulation in Rodents: A Systematic Review},
|
||||
volume = {2020},
|
||||
issn = {1687-5443},
|
||||
doi = {10.1155/2020/4795267},
|
||||
shorttitle = {Memory and Cognition-Related Neuroplasticity Enhancement by Transcranial Direct Current Stimulation in Rodents},
|
||||
abstract = {Brain stimulation techniques, including transcranial direct current stimulation ({tDCS}), were identified as promising therapeutic tools to modulate synaptic plasticity abnormalities and minimize memory and learning deficits in many neuropsychiatric diseases. Here, we revised the effect of {tDCS} on the modulation of neuroplasticity and cognition in several animal disease models of brain diseases affecting plasticity and cognition. Studies included in this review were searched following the terms ("transcranial direct current stimulation") {AND} (mice {OR} mouse {OR} animal) and according to the {PRISMA} statement requirements. Overall, the studies collected suggest that {tDCS} was able to modulate brain plasticity due to synaptic modifications within the stimulated area. Changes in plasticity-related mechanisms were achieved through induction of long-term potentiation ({LTP}) and upregulation of neuroplasticity-related proteins, such as c-fos, brain-derived neurotrophic factor ({BDNF}), or N-methyl-D-aspartate receptors ({NMDARs}). Taken into account all revised studies, {tDCS} is a safe, easy, and noninvasive brain stimulation technique, therapeutically reliable, and with promising potential to promote cognitive enhancement and neuroplasticity. Since the use of {tDCS} has increased as a novel therapeutic approach in humans, animal studies are important to better understand its mechanisms as well as to help improve the stimulation protocols and their potential role in different neuropathologies.},
|
||||
pages = {4795267},
|
||||
journaltitle = {Neural Plasticity},
|
||||
shortjournal = {Neural Plast},
|
||||
author = {Cavaleiro, Carla and Martins, João and Gonçalves, Joana and Castelo-Branco, Miguel},
|
||||
date = {2020},
|
||||
pmid = {32211039},
|
||||
pmcid = {PMC7061127},
|
||||
keywords = {Animals, Brain, Cognition, Disease Models, Animal, Learning, Memory, Neuronal Plasticity, Neurons, Transcranial Direct Current Stimulation},
|
||||
file = {Full Text PDF:/home/frederik/Zotero/storage/RZFWTQ32/Cavaleiro et al. - 2020 - Memory and Cognition-Related Neuroplasticity Enhancement by Transcranial Direct Current Stimulation.pdf:application/pdf},
|
||||
}
|
||||
|
||||
@article{meinzer_investigating_2024,
|
||||
title = {Investigating the neural mechanisms of transcranial direct current stimulation effects on human cognition: current issues and potential solutions},
|
||||
volume = {18},
|
||||
issn = {1662-453X},
|
||||
url = {https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1389651/full},
|
||||
doi = {10.3389/fnins.2024.1389651},
|
||||
shorttitle = {Investigating the neural mechanisms of transcranial direct current stimulation effects on human cognition},
|
||||
abstract = {Transcranial direct current stimulation ({tDCS}) has been studied extensively for its potential to enhance human cognitive functions in healthy individuals and to treat cognitive impairment in various clinical populations. However, little is known about how {tDCS} modulates the neural networks supporting cognition and the complex interplay with mediating factors that may explain the frequently observed variability of stimulation effects within and between studies. Moreover, research in this field has been characterized by substantial methodological variability, frequent lack of rigorous experimental control and small sample sizes, thereby limiting the generalizability of findings and translational potential of {tDCS}.The present manuscript aims to delineate how these important issues can be addressed within a neuroimaging context, to reveal the neural underpinnings, predictors and mediators of {tDCS}-induced behavioral modulation. We will focus on functional magnetic resonance imaging ({fMRI}), because it allows the investigation of {tDCS} effects with excellent spatial precision and sufficient temporal resolution across the entire brain. Moreover, high resolution structural imaging data can be acquired for precise localization of stimulation effects, verification of electrode positions on the scalp and realistic current modeling based on individual head and brain anatomy. However, the general principles outlined in this review will also be applicable to other imaging modalities.Following an introduction to the overall state-of-the-art in this field, we will discuss in more detail the underlying causes of variability in previous {tDCS} studies. Moreover, we will elaborate on design considerations for {tDCS}-{fMRI} studies, optimization of {tDCS} and imaging protocols and how to assure high-level experimental control. Two additional sections address the pressing need for more systematic investigation of {tDCS} effects across the healthy human lifespan and implications for {tDCS} studies in age-associated disease, and potential benefits of establishing large-scale, multidisciplinary consortia for more coordinated {tDCS} research in the future.We hope that this review will contribute to more coordinated, methodologically sound, transparent and reproducible research in this field. Ultimately, our aim is to facilitate a better understanding of the underlying mechanisms by which {tDCS} modulates human cognitive functions and more effective and individually tailored translational and clinical applications of this technique in the future.},
|
||||
journaltitle = {Frontiers in Neuroscience},
|
||||
shortjournal = {Front. Neurosci.},
|
||||
author = {Meinzer, Marcus and Shahbabaie, Alireza and Antonenko, Daria and Blankenburg, Felix and Fischer, Rico and Hartwigsen, Gesa and Nitsche, Michael A. and Li, Shu-Chen and Thielscher, Axel and Timmann, Dagmar and Waltemath, Dagmar and Abdelmotaleb, Mohamed and Kocataş, Harun and Caisachana Guevara, Leonardo M. and Batsikadze, Giorgi and Grundei, Miro and Cunha, Teresa and Hayek, Dayana and Turker, Sabrina and Schlitt, Frederik and Shi, Yiquan and Khan, Asad and Burke, Michael and Riemann, Steffen and Niemann, Filip and Flöel, Agnes},
|
||||
urldate = {2025-10-28},
|
||||
date = {2024-06-18},
|
||||
note = {Publisher: Frontiers},
|
||||
keywords = {Cognition, Consortia, Design optimization, Experimental control, Lifespan, {tDCS}-{fMRI}, {TES}, variability},
|
||||
file = {Full Text PDF:/home/frederik/Zotero/storage/EYMSBQRL/Meinzer et al. - 2024 - Investigating the neural mechanisms of transcranial direct current stimulation effects on human cogn.pdf:application/pdf},
|
||||
}
|
||||
|
||||
@article{woods_technical_2016,
|
||||
title = {A technical guide to {tDCS}, and related non-invasive brain stimulation tools},
|
||||
volume = {127},
|
||||
issn = {1388-2457},
|
||||
url = {https://pmc.ncbi.nlm.nih.gov/articles/PMC4747791/},
|
||||
doi = {10.1016/j.clinph.2015.11.012},
|
||||
abstract = {Transcranial electrical stimulation ({tES}), including transcranial direct and alternating current stimulation ({tDCS}, {tACS}) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for {tES} application. This review covers technical aspects of {tES}, as well as applications like exploration of brain physiology, modelling approaches, {tES} in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain.},
|
||||
pages = {1031--1048},
|
||||
number = {2},
|
||||
journaltitle = {Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology},
|
||||
shortjournal = {Clin Neurophysiol},
|
||||
author = {Woods, {AJ} and Antal, A and Bikson, M and Boggio, {PS} and Brunoni, {AR} and Celnik, P and Cohen, {LG} and Fregni, F and Herrmann, {CS} and Kappenman, {ES} and Knotkova, H and Liebetanz, D and Miniussi, C and Miranda, {PC} and Paulus, W and Priori, A and Reato, D and Stagg, C and Wenderoth, N and Nitsche, {MA}},
|
||||
urldate = {2025-10-28},
|
||||
date = {2016-02},
|
||||
pmid = {26652115},
|
||||
pmcid = {PMC4747791},
|
||||
file = {Full Text PDF:/home/frederik/Zotero/storage/ET3AFXRY/Woods et al. - 2016 - A technical guide to tDCS, and related non-invasive brain stimulation tools.pdf:application/pdf},
|
||||
}
|
||||
|
||||
@article{li_effects_2024,
|
||||
title = {Effects of Transcranial Direct Current Stimulation on Cognitive Function in Older Adults with and without Mild Cognitive Impairment: A Systematic Review and Meta-Analysis of Randomized Controlled Trials},
|
||||
volume = {70},
|
||||
issn = {0304-324X},
|
||||
url = {https://doi.org/10.1159/000537848},
|
||||
doi = {10.1159/000537848},
|
||||
shorttitle = {Effects of Transcranial Direct Current Stimulation on Cognitive Function in Older Adults with and without Mild Cognitive Impairment},
|
||||
abstract = {Introduction: Noninvasive brain stimulation ({NIBS}) has shown benefits for cognitive function in older adults. However, the effects of transcranial direct current stimulation ({tDCS}) on cognitive function in older adults are inconsistent across studies, and the evidence for {tDCS} has limitations. We aim to explore whether {tDCS} can improve cognitive function and different cognitive domains (i.e., learning and memory and executive function) in adults aged 65 years and older with and without mild cognitive impairment and to further analyze the influencing factors of {tDCS}. Methods: Five English databases ({PubMed}, Cochrane Library, {EMBASE}, Web of Science, the cumulative Index to Nursing and Allied Health Literature [{CINAHL}]) and four Chinese databases were searched from inception to October 14, 2023. Literature screening, data extraction, and quality assessment were completed independently by two reviewers. All statistical analyses were conducted using {RevMan} software (version 5.3). Standardized mean difference ({SMD}) along with a 95\% confidence interval ({CI}) was used to express the effect size of the outcomes, and a random-effect model was also used. Results: A total of 10 {RCTs} and 1,761 participants were included in the meta-analysis, and the risk of bias in those studies was relatively low. A significant effect favoring {tDCS} on immediate postintervention cognitive function ({SMD} = 0.16, Z = 2.36, p = 0.02) was found. However, the effects on immediate postintervention learning and memory ({SMD} = 0.20, Z = 2.00, p = 0.05) and executive function ({SMD} = 0.10, Z = 1.22, p = 0.22), and 1-month postintervention cognitive function ({SMD} = 0.12, Z = 1.50, p = 0.13), learning and memory ({SMD} = 0.17, Z = 1.39, p = 0.16), and executive function ({SMD} = 0.08, Z = 0.67, p = 0.51) were not statistically significant. Conclusion: {tDCS} can significantly improve the immediate postintervention cognitive function of healthy older adults and {MCI} elderly individuals. Additional longitudinal extensive sample studies are required to clarify the specific effects of {tDCS} on different cognitive domains, and the optimal {tDCS} parameters need to be explored to guide clinical practice.},
|
||||
pages = {544--560},
|
||||
number = {5},
|
||||
journaltitle = {Gerontology},
|
||||
shortjournal = {Gerontology},
|
||||
author = {Li, Sijia and Tang, Ying and Zhou, You and Ni, Yunxia},
|
||||
urldate = {2025-10-28},
|
||||
date = {2024-03-08},
|
||||
file = {Full Text PDF:/home/frederik/Zotero/storage/ABXTN2K9/Li et al. - 2024 - Effects of Transcranial Direct Current Stimulation on Cognitive Function in Older Adults with and wi.pdf:application/pdf;Snapshot:/home/frederik/Zotero/storage/AP8WANKP/000537848.html:text/html},
|
||||
}
|
||||
|
||||
@inproceedings{hamilton_neural_2015,
|
||||
title = {Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system},
|
||||
url = {https://ieeexplore.ieee.org/document/7320207},
|
||||
doi = {10.1109/EMBC.2015.7320207},
|
||||
abstract = {A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the {LFP} time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing ({CS}) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified {OSort} algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of {LFP} signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed to define brain network connectivity and neural network dynamics that vary at the individual patient level and vary over time.},
|
||||
eventtitle = {2015 37th Annual International Conference of the {IEEE} Engineering in Medicine and Biology Society ({EMBC})},
|
||||
pages = {7831--7836},
|
||||
booktitle = {2015 37th Annual International Conference of the {IEEE} Engineering in Medicine and Biology Society ({EMBC})},
|
||||
author = {Hamilton, Lei and {McConley}, Marc and Angermueller, Kai and Goldberg, David and Corba, Massimiliano and Kim, Louis and Moran, James and Parks, Philip D. and Chin, Sang and Widge, Alik S. and Dougherty, Darin D. and Eskandar, Emad N.},
|
||||
urldate = {2025-10-28},
|
||||
date = {2015-08},
|
||||
note = {{ISSN}: 1558-4615},
|
||||
keywords = {Algorithm design and analysis, Base stations, Closed-loop Control, Decode, Dictionaries, Neural Stimulation, Neuropsychiatric Disorders, Real-time systems, Signal processing, Signal Processing, Signal processing algorithms, Software algorithms},
|
||||
file = {Full Text PDF:/home/frederik/Zotero/storage/BTGZA7MM/Hamilton et al. - 2015 - Neural signal processing and closed-loop control algorithm design for an implanted neural recording.pdf:application/pdf},
|
||||
}
|
||||
|
||||
@article{simonsmeier_electrical_2018,
|
||||
title = {Electrical brain stimulation ({tES}) improves learning more than performance: A meta-analysis},
|
||||
volume = {84},
|
||||
issn = {01497634},
|
||||
url = {https://linkinghub.elsevier.com/retrieve/pii/S0149763417303172},
|
||||
doi = {10.1016/j.neubiorev.2017.11.001},
|
||||
shorttitle = {Electrical brain stimulation ({tES}) improves learning more than performance},
|
||||
abstract = {Researchers have recently started evaluating whether stimulating the brain noninvasively with a weak and painless electrical current (transcranial Electrical Stimulation, {tES}) enhances physiological and cognitive processes. Some studies found that {tES} has weak but positive effects on brain physiology, cognition, or assessment performance, which has attracted massive public interest. We present the first meta-analytic test of the hypothesis that {tES} in a learning phase is more effective than {tES} in an assessment phase. The meta-analysis included 246 effect sizes from studies on language or mathematical competence. The effect of {tES} was stronger when stimulation was administered during a learning phase (d = 0.712) as compared to stimulation administered during test performance (d = 0.207). The overall effect was stimulation-dosage specific and, as found in a previous meta-analysis, significant only for anodal stimulation and not for cathodal. The results provide evidence for the modulation of long-term synaptic plasticity by {tES} in the context of practically relevant learning tasks and highlight the need for more systematic evaluations of {tES} in educational settings.},
|
||||
pages = {171--181},
|
||||
journaltitle = {Neuroscience \& Biobehavioral Reviews},
|
||||
shortjournal = {Neuroscience \& Biobehavioral Reviews},
|
||||
author = {Simonsmeier, Bianca A. and Grabner, Roland H. and Hein, Julia and Krenz, Ugne and Schneider, Michael},
|
||||
urldate = {2025-10-28},
|
||||
date = {2018-01},
|
||||
langid = {english},
|
||||
file = {PDF:/home/frederik/Zotero/storage/ZH2XLENF/Simonsmeier et al. - 2018 - Electrical brain stimulation (tES) improves learning more than performance A meta-analysis.pdf:application/pdf},
|
||||
}
|
||||
|
||||
@article{senkowski_boosting_2022,
|
||||
title = {Boosting working memory: uncovering the differential effects of {tDCS} and {tACS}},
|
||||
volume = {3},
|
||||
issn = {2632-7376},
|
||||
url = {https://pmc.ncbi.nlm.nih.gov/articles/PMC9113288/},
|
||||
doi = {10.1093/texcom/tgac018},
|
||||
shorttitle = {Boosting working memory},
|
||||
abstract = {Working memory ({WM}) is essential for reasoning, decision-making, and problem solving. Recently, there has been an increasing effort in improving {WM} through noninvasive brain stimulation ({NIBS}), especially transcranial direct and alternating current stimulation ({tDCS}/{tACS}). Studies suggest that {tDCS} and {tACS} can modulate {WM} performance, but large variability in research approaches hinders the identification of optimal stimulation protocols and interpretation of study results. Moreover, it is unclear whether {tDCS} and {tACS} differentially affect {WM}. Here, we summarize and compare studies examining the effects of {tDCS} and {tACS} on {WM} performance in healthy adults. Following {PRISMA}-selection criteria, our systematic review resulted in 43 studies (29 {tDCS}, 11 {tACS}, 3 both) with a total of 1826 adult participants. For {tDCS}, only 4 out of 23 single-session studies reported effects on {WM}, while 7 out of 9 multi-session experiments showed positive effects on {WM} training. For {tACS}, 10 out of 14 studies demonstrated effects on {WM}, which were frequency dependent and robust for frontoparietal stimulation. Our review revealed no reliable effect of single-session {tDCS} on {WM} but moderate effects of multi-session {tDCS} and single-session {tACS}. We discuss the implications of these findings and future directions in the emerging research field of {NIBS} and {WM}.},
|
||||
pages = {tgac018},
|
||||
number = {2},
|
||||
journaltitle = {Cerebral Cortex Communications},
|
||||
shortjournal = {Cereb Cortex Commun},
|
||||
author = {Senkowski, Daniel and Sobirey, Rabea and Haslacher, David and Soekadar, Surjo R},
|
||||
urldate = {2025-10-28},
|
||||
date = {2022-05-07},
|
||||
pmid = {35592391},
|
||||
pmcid = {PMC9113288},
|
||||
file = {Full Text PDF:/home/frederik/Zotero/storage/YT8A9PEV/Senkowski et al. - 2022 - Boosting working memory uncovering the differential effects of tDCS and tACS.pdf:application/pdf},
|
||||
}
|
||||
|
||||
@online{noauthor_neurowissenschaft_nodate,
|
||||
title = {Neurowissenschaft: Hirnmanipulation per Hightech},
|
||||
url = {https://www.spektrum.de/news/transkranielle-hirnstimulation-als-therapie/1345240},
|
||||
shorttitle = {Neurowissenschaft},
|
||||
abstract = {Durch Elektrizität und Magnetfelder lässt sich das Gehirn von außen beeinflussen},
|
||||
urldate = {2025-10-28},
|
||||
langid = {german},
|
||||
file = {Snapshot:/home/frederik/Zotero/storage/H29CF4ME/1345240.html:text/html},
|
||||
}
|
||||
|
||||
@online{doccheck_transkranielle_nodate,
|
||||
title = {Transkranielle Gleichstromstimulation},
|
||||
url = {https://flexikon.doccheck.com/de/Transkranielle_Gleichstromstimulation},
|
||||
abstract = {Die transkranielle Gleichstromstimulation, kurz {tDCS}, ist ein nicht-invasives, neurostimulatorisches Verfahren, das schwache elektrische...},
|
||||
titleaddon = {{DocCheck} Flexikon},
|
||||
author = {{DocCheck}, Medizinexpert*innen bei},
|
||||
urldate = {2025-10-28},
|
||||
langid = {german},
|
||||
file = {Snapshot:/home/frederik/Zotero/storage/P76JNYPZ/Transkranielle_Gleichstromstimulation.html:text/html},
|
||||
}
|
||||
|
||||
6
Main.tex
6
Main.tex
@ -21,9 +21,5 @@
|
||||
\input{Content/01_content.tex}
|
||||
\input{Content/99_bib.tex}
|
||||
|
||||
\iffalse
|
||||
\pagebreak
|
||||
% Print the glossary
|
||||
\printnoidxglossaries
|
||||
\fi
|
||||
\glsaddallunused
|
||||
\end{document}
|
||||
|
||||
@ -1,13 +1,24 @@
|
||||
%!TEX root = ../Main.tex
|
||||
\makeglossaries
|
||||
\iffalse
|
||||
\newglossarystyle{manualfixedwidth}{
|
||||
\setglossarystyle{long3colheader} % Use existing stable base style
|
||||
\newcolumntype{R}{>{\raggedleft\arraybackslash}p{2cm}}
|
||||
\setlength\LTleft{-5pt}
|
||||
\renewenvironment{theglossary}%
|
||||
{\begin{longtable}{p{4cm}p{10cm}R}} % override only the tabular environment specifying widths
|
||||
{\end{longtable}}%
|
||||
}
|
||||
\fi
|
||||
|
||||
\newglossarystyle{manualfixedwidth}{
|
||||
\setglossarystyle{long3colheader} % Use existing stable base style
|
||||
\newcolumntype{R}{>{\raggedleft\arraybackslash}p{2cm}}
|
||||
\setlength\LTleft{-5pt}
|
||||
\renewenvironment{theglossary}%
|
||||
{\begin{longtable}{p{4cm}p{10cm}R}} % override only the tabular environment specifying widths
|
||||
{\end{longtable}}%
|
||||
\setglossarystyle{long3colheader} % Use existing stable base style
|
||||
\newcolumntype{R}{>{\raggedleft\arraybackslash}p{2cm}}
|
||||
\setlength\LTleft{-5pt}
|
||||
\renewenvironment{theglossary}%
|
||||
{\begin{longtable}{p{3cm}p{11cm}R}} % override only the tabular environment specifying widths
|
||||
{\end{longtable}}%
|
||||
\renewcommand{\arraystretch}{1.5} % 1.5 times normal line height
|
||||
}
|
||||
|
||||
\setglossarystyle{manualfixedwidth}
|
||||
@ -21,12 +32,52 @@
|
||||
\renewcommand*{\glsclearpage}{}
|
||||
\renewcommand{\acronymname}{Abkürzungsverzeichnis}
|
||||
|
||||
%%% https://golatex.de/viewtopic.php?t=23348
|
||||
% masculine genitive
|
||||
\glsaddkey
|
||||
{genitive}% key
|
||||
{}% default value
|
||||
{\glsentrygenitive}% no link cs
|
||||
{\Glsentrygenitive}% no link ucfirst cs
|
||||
{\glsgen}% link cs
|
||||
{\Glsgen}% link ucfirst cs
|
||||
{\GLSgen}% link all caps cs
|
||||
|
||||
% ====== CONTENT ======
|
||||
|
||||
\newglossaryentry{abstract}
|
||||
{
|
||||
name=Abstract,
|
||||
description={Das Abstract beschreibt in wenigen Sätzen die Zielsetzung und das Ergebnis der Ausarbeitung. Das Abstract muss sich vollständig auf der Titelseite befinden. Die Zeichensatzformatierung wird in einem eigenen Absatz beschrieben Das Abstract soll es den Lesern:innen ermöglichen, innerhalb von wenigen Augenblicken zu erfassen, welcher Inhalt hinter der Überschrift steckt und ob das Thema, aus Sicht der Leser:innen, zur weiteren Bearbeitung lohnt. Das Abstract ist keine verbale Beschreibung des Inhaltsverzeichnisses, sondern gibt kurz und knapp z.B. die Zielsetzung (z.B. Hypothese), die eingesetzten Methoden und die erzielten Ergebnisse / Erkenntnisse bekannt.}
|
||||
name=Abstract,
|
||||
description={Das Abstract beschreibt in wenigen Sätzen die Zielsetzung und das Ergebnis der Ausarbeitung. Das Abstract muss sich vollständig auf der Titelseite befinden. Die Zeichensatzformatierung wird in einem eigenen Absatz beschrieben Das Abstract soll es den Lesern:innen ermöglichen, innerhalb von wenigen Augenblicken zu erfassen, welcher Inhalt hinter der Überschrift steckt und ob das Thema, aus Sicht der Leser:innen, zur weiteren Bearbeitung lohnt. Das Abstract ist keine verbale Beschreibung des Inhaltsverzeichnisses, sondern gibt kurz und knapp z.B. die Zielsetzung (z.B. Hypothese), die eingesetzten Methoden und die erzielten Ergebnisse / Erkenntnisse bekannt.}
|
||||
}
|
||||
|
||||
\newacronym{gcd}{GCD}{Greatest Common Divisor}
|
||||
\newacronym{a:tES}{tES}{Transkranielle Elektrostimulation}
|
||||
|
||||
\newacronym{lcm}{LCM}{Least Common Multiple}
|
||||
\newglossaryentry{tES}
|
||||
{
|
||||
name=Transkranielle Elektrostimulation,
|
||||
description={
|
||||
Die transkranielle Elektrostimulation, kurz \acrshort{a:tES}, ist ein nicht-invasives, neurostimulatorisches Verfahren, das schwache elektrische Ströme nutzt, um die neuronale Aktivität im Gehirn zu modulieren.
|
||||
},
|
||||
genitive=Transkraniellen Elektrostimulation
|
||||
}
|
||||
|
||||
\newacronym{a:tDCS}{tDCS}{Transkranielle Gleichstromstimulation}
|
||||
|
||||
\newglossaryentry{tDCS}
|
||||
{
|
||||
name=Transkranielle Gleichstromstimulation,
|
||||
description={
|
||||
Die transkranielle Gleichstromstimulation, kurz \acrshort{a:tDCS}, ist eine variante der \glsgen{tES}, die Gleichströme verwendet.
|
||||
}
|
||||
}
|
||||
|
||||
\newacronym{a:tACS}{tACS}{Transkranielle Alternierende Stromstimulation}
|
||||
|
||||
\newglossaryentry{tACS}
|
||||
{
|
||||
name=Transkranielle Alternierende Stromstimulation,
|
||||
description={
|
||||
Die transkranielle Alternierende Stromstimulation, kurz \acrshort{a:tACS}, ist eine variante der \glsgen{tES}, die Wechselströme verwendet.
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user